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NONMEM is the current reference software for population pharmacokinetic/ 
pharmacodynamic (PK/PD) analysis.  In the last ten years, a series of new tools for 
population PK/PD modeling have become available.  These include methods based on 
exact likelihood functions and three-stage Bayesian method.  Here we compare population 
analysis results for several of these programs with results from NONMEM.

INTRODUCTION

OBJECTIVES
To provide a brief overview of the statistical basis of the selected estimation methods and 
assess the utility of these methods in various population PK/PD modeling problems.

THEORY

RESULTS AND CONCLUSIONS

A. Two-Stage Nonlinear Mixed Effects Model

∑ ∫
=

+∞

∞−

Ω−=
m

i
i dhylL

1
)),(),(log(2 θµθσθ

Objective function (twice negative logarithm of the joint marginal density) for m subjects:
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= probability density of observed data (intra-individual variability)

= probability density of parameters among individual (inter- individual 
variability

GOAL
To find the set of mean population parameters µ, population variance Ω, and residual error 
coefficients σ that best fit the data from m subjects by maximizing the above marginal 
density of y with respect to µ, Ω, and σ by (or minimizing the objective function L)

Classification of the Parametric Two-Stage Nonlinear Mixed 
Effects Models

Methods based on analytical approximation of the objective function
1. FO Method: linearization of data deviation at the inter- and intra-individual 

error level.  (NONMEM FO) 
2. FOCE Method: linearization of data deviation at the intra-individual error  

level.  (NONMEM FOCE)
3. EM Methods 

- Iterative 2-stage EM (ITS) linearization of data deviation at the intra-
individual data level.

Methods based on exact objective function
1. Gaussian Quadrature (SAS PROC NLMIXED)
2. EM Methods:

- Monte-Carlo Parametric Expectation Maximization (MCPEM)
- SADAPT-MCPEM, PDx-MCPEM

- Stochastic approximation of EM (SAEM)
- MONOLIX

B. Three-Stage Nonlinear Mixed Effects Model/Bayesian 
Method (WinBUGS)
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GOAL
Bayesian three-stage nonlinear mixed effects model does not minimize the objective 
function. Rather, a series of possible µ’s, Ω’s, and σ’s are collected with a frequency that 
is based on their likelihood of explaining the data using the following probability:

The probability π(.) is the distribution of µ, Ω, and σ based on prior knowledge.  
Typically, the distribution of µ is modeled as a normal distribution with a prior mean q
and variance H.  The Ω inter-individual variance is modeled as a Wishart distribution with 
prior parameters W, and the residual variance σ is modeled as a gamma distribution with 
prior parameter τ.

DATA SET 1
2-compartment PK model with 2 data points per subjects, 1000 subjects.  Dose = 100 units 
IV bolus dose.  Data were simulated at 2 PK sampling times from a discrete set of times: 
0.1, 0.2, 0.4, 0.7, 1, 2, 4, 7, 10, 10, 20 40, and 70 times units.  All possible pairs of times 
were equally represented among the subjects.  

Parameter References Initial 
Values

NOMEM
FO

NONMEM
FOCE

SADAPT
ITS

SADAPT
MCPEM

MONOLIX WinBUGS

CL 4.96 2 4.50
(0.0786)

5.30
(0.0873)

4.94
(0.0849)

4.90
(0.078)

4.89
(0.0766)

4.90
(0.0853)

V1 5.06 2 5.52
(0.123)

5.53
(0.116)

5.04
(0.116)

5.16
(0.120)

5.14
(0.0957)

5.16
(0.123)

Q 1.99 2 2.20
(0.0911)

2.03
(0.0761)

1.58
(0.0822)

1.97
(0.0857)

1.96
(0.0478)

1.97
(0.0922)

V2 9.83 2 14.7
(0.422)

10.1
(0.300)

8.36
(0.343)

9.50
(0.321)

9.42
(0.183)

9.50
(0.336)

Var(CL) 0.163 0.8 0.208
(0.0160)

0.190
(0.011)

0.181
(0.0126)

0.184
(0.0128)

0.183
(0.0102)

0.185
(0.0127)

Var(V1) 0.154 0.8 0.155
(0.0251)

0.175
(0.0188)

0.225
(0.0214)

0.138
(0.0129)

0.137
(0.0112)

0.141
(0.0197)

Var(Q) 0.154 0.8 0.242
(0.0682)

0.230
(0.0368)

0.373
(0.0726)

0.173
(0.0481)

0.179
(0.0156)

0.167
(0.0497)

Var(V2) 0.147 0.8 0.153
(0.0561)

0.124
(0.0179)

0.240
(0.0523)

0.146
(0.0269)

0.128
(0.0109)

0.139
(0.0325)

Sigma 0.25 0.25 0.273
(0.0190)

0.205
(0.00937)

0.173
(0.00277)

0.243
(0.0120)

0.244
(0.00691)

0.246
(0.0129)

-2LL -300.347 -2630.7 -2530.6 -2729.5 -2716.97 -

Computation 
Time

1 min 3 min 2 h 14 min 11 min 41 min (80000 
samples)

Numbers in red – Estimated value more than 3 SE from reference.  
Numbers in green – Estimated value more than 2 SE from reference.
Values in () are standard errors of the reported means.

DATA SET 2
One-compartment PK model with first-order elimination and saturable elimination, plus an indirect 
response PD model, requiring numerical integration of a set of differential equations:
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Each of 25 simulated subjects received an IV bolus of 100 units followed by an IV infusion of 1000 units 
over 1 time unit at time 7.  PKPD samples were collected at 0.05, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, 7, 
7.125, 7.25, 8, 10, 12, 14, 16, 18, 20, 22, 26, and 28 units.  The PKPD data were analyzed 
simultaneously.

Parameter References Initial 
Values

NOMEM
FOa,b

NONMEM
FOCEb

SADAPT
ITS

SADAPT
MCPEM

PDx-MCPEM WinBUGS

Vc 47.7 2 110 7.8 47.4
(3.41)

47.9
(2.99)

47.7
(1.3)

47.8
(3.44)

K10 0.0943 2 0.0468 0.0955 0.0959
(0.00583)

0.0943
(0.00543)

0.997
(0.006)

0.0960
(0.00666)

Vm 9.40 2 6.91 9.30 9.28
(0.699)

9.33
(0.689)

9.2
(0.88)

9.21
(0.757)

Km 1.12 2 1.16 1.10 1.09
(0.0698)

1.11
(0.0647)

1.10
(0.10)

1.09
(0.0765)

Ksyn 37.9 2 57.8 37.8 37.7
(2.81)

38.1
(2.67)

37.5
(3.1)

37.6
(2.80)

Var(Km) 0.0725 2 0.841 0.0710 0.0756
(0.0973)

0.0721
(0.0231)

0.070 0.112
(0.0371)

Sigma_PK 0.1 0.3 0.817 0.0957 0.0940
(0.00356)

0.0956
(0.0363)

0.096 0.0964
(0.00359)

Var(Ksyn) 0.130 2 0.414 0.109 0.116
(0.466)

0.118
(0.0339)

0.103 0.137
(0.0426)

Kdeg 0.507 2 0.504 0.510 0.507
(0.0341)

0.513
(0.0311)

0.505
(1.2)

0.506
(0.0335)

Var(Vc) 0.101 2 0.667 0.0924 0.0970
(0.126)

0.0963
(0.0271)

0.096 0.127
(0.0393)

Var(K10) 0.0795 2 4.49 0.0758 0.0798
(0.286)

0.0774
(0.0227)

0.071 0.118
(0.0393)

Var(Vm) 0.133 2 0.0748 0.122 0.129
(0.325)

0.131
(0.0380)

0.122 0.166
(0.0526)

Var(Kdeg) 0.0932 2 0.119 0.0808 0.0829
(0.366)

0.0845
(0.0251)

0.080 0.107
(0.0334)

Sigma_PD 0.15 0.3 0.314 0.147 0.0148
(0.00490)

0.0147
(0.00449)

0.0147 0.147
(0.00452)

-2LL -96.732 -4028.374 -4027.4 -4027.1 -4013

Computation 
Time

3 min, 
1 restart

8 hr,
1 restart

5.5 min 12 min 30 min 9.8 h (70000 
samples)

a Best final estimates were obtained by fitting the model to log-transformed data.
b Standard error could not obtained for NONMEM FO and FOCE methods, so those of WinBUGs were used for assessing the relative deviation from 

references.  Numbers in red – Estimated value more than 3 SE from reference. Values in () are standard errors of the reported means.
MONOLIX 1.1 version did not support differential equation solver and was not tested in DATA SET 2

CONCLUSIONS:
1. Monte Carlo EM algorithms (S-ADAPT, MONOLIX, PDx-MCPEM) can provide accurate results 

with sparse or rich data
2. MCPEM methods perform more slowly than NONMEM FOCE for simple models, but perform 

more quickly and requires fewer interventions than NONMEM FOCE for complex models.
3. WinBUGs provides accurate assessments of the population parameters and standard error for 

both simple and complex models. 
4. WinBUGS and S-ADAPT provided additional Bayesian analysis, allowing assessment of quantile 

ranges on the uncertainties of the parameters. The two programs provided similar results.
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Table 1:  Comparison of Final Parameter Estimates from Different Estimation Methods

Table 2:  Comparison of Final Parameter Estimates from Different Estimation Methods

Table 3:  Quantiles from Bayesian Analysis in S-ADAPT and WinBUGS (Percentile of the 
Model Parameters)

Parameter S-ADAPT 
0.025

WinBUGS
0.025

S-ADAPT 
0.5

WinBUGS
0.5

S-ADAPT 
0.975

WinBUGS
0.975

Vc 42.4 41.6 48.4 47.7 54.5 55.3
K10 0.0830 0.0840 0.0943 0.0960 0.1065 0.1103
VM 7.74 7.81 9.28 9.23 11.0 10.8
Kmc 0.966 0.944 1.13 1.09 1.34 1.25
K02 33.0 32.5 38.0 37.6 43.5 43.6
K20 0.455 0.444 0.510 0.506 0.585 0.576
SD1 0.0881 0.0897 0.0961 0.0963 0.103 0.104
SD2 0.137 0.139 0.147 0.147 0.157 0.157
Var(Vc) 0.0692 0.0720 0.121 0.120 0.246 0.223
Var(K10) 0.0580 0.0657 0.0947 0.111 0.185 0.210
Var(Vm) 0.0869 0.0919 0.161 0.157 0.326 0.298
Var(Kmc) 0.0455 0.0594 0.0994 0.105 0.210 0.202
Var(K02) 0.0727 0.0774 0.138 0.129 0.264 0.242
Var(K20) 0.0649 0.0602 0.106 0.100 0.171 0.189

WinBUGS took 80 minutes to complete 10000 random samples, S-ADAPT took 50 minutes.

METHODS
Analyses were performed on a Dell Pentium 4 3.20 Ghz computer, with 1 gigabyte non-
ECC 400 MHz DDR2 memory, and 80 GB SATA 7200 rpm hard drive with Data Burst 
Cache.  The operating system was Windows XP, and the NONMEM VI, S-ADAPT, and 
PDx-MCPEM software packages were compiled using Intel Fortran 9.1.  The 
BlackBox/Component Pascal system was used to compile WinBUGS models. 


